Математическая модель изменения состава зерна при охлаждении двухкомпонентного расплава
Автор: Дрозин Александр Дмитриевич, Найман Софья Романовна, Кочетов Никита Евгеньевич, Воробьев Артем Владимирович, Моисеев Игорь Алексеевич
Журнал: Вестник Южно-Уральского государственного университета. Серия: Металлургия @vestnik-susu-metallurgy
Рубрика: Металловедение и термическая обработка
Статья в выпуске: 1 т.19, 2019 года.
Бесплатный доступ
Рассматривается рост отдельных зерен твердой фазы при охлаждении жидкого расплава. По мере охлаждения меняются составы жидкой и твердой фаз и условия равновесия. Поэтому каждый последующий слой, «намерзающий» на зерно, будет иметь несколько иной состав. В данной работе предложен метод расчета изменения состава зерна по мере удаления от его центра. Для этого разработана математическая модель, базирующая на следующих допущениях: растущее зерно считается сферическим; выравнивание температуры в системе и выравнивание состава жидкой фазы происходят моментально; выравнивание состава твёрдой фазы не происходит. При этом считали, что при любой температуре соблюдается локальное равновесие жидкой фазы и поверхностного слоя твердой фазы. Характеристики этого локального равновесия могут быть определены из соответствующей равновесной диаграммы состояния. Было составлено уравнение баланса масс фаз и масс их компонентов при бесконечно малом снижении температуры. Считали, что при этом соблюдается локальное равновесие жидкой фазы и бесконечно тонкого слоя твердой фазы, выделившегося при этом снижении температуры. Переходя к пределам, получили дифференциальное уравнение, описывающее исследуемый процесс. Решение этого уравнения было получено в виде интегральной функции массы затвердевшего сплава от температуры. Так как масса затвердевшего сплава при наших допущениях однозначно связана с его массой, решение всей задачи - определение состава зерна в зависимости от расстояния до его центра - было получено в виде параметрической функции, выражающей радиус текущей точки зерна и его состав в этой точке через температуру. Составлена компьютерная программа расчета по уравнениям математической модели. Для использования модели нужно знать состав исходного расплава, среднюю плотность твердой фазы и уравнения линий ликвидуса и солидуса в виде функций состава от температуры. Представлен пример расчета.
Математическая модель, металловедение, диаграмма состояния, ликвация
Короткий адрес: https://sciup.org/147232529
IDR: 147232529 | DOI: 10.14529/met190107