Adaptive interpolation based on optimization of the decision rule in a multidimensional feature space

Автор: Gashnikov Mikhael Valeryevich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений, распознавание образов

Статья в выпуске: 1 т.44, 2020 года.

Бесплатный доступ

An adaptive multidimensional signal interpolator is proposed, which selects an interpolating function at each signal point by means of the decision rule optimized in a multidimensional feature space using a decision tree. The search for the dividing boundary when splitting the decision tree vertices is carried out by a recurrence procedure that allows, in addition to the search for the boundary, selecting the best pair of interpolating functions from a predetermined set of functions of an arbitrary form. Results of computational experiments in nature multidimensional signals are presented, confirming the effectiveness of the adaptive interpolator.

Еще

Multidimensional signal, adaptive interpolation, multidimensional feature, optimization, interpolation error

Короткий адрес: https://sciup.org/140247063

IDR: 140247063   |   DOI: 10.18287/2412-6179-CO-661

Статья научная