Модели управления в точном земледелии. Рубрика в журнале - Сельскохозяйственная биология
Статья научная
В настоящее время одним из важных инструментов увеличения производства растениеводческой продукции становится внедрение систем точного земледелия. Как обязательный элемент таких систем в последние годы с успехом применяется управление продукционным процессом на основе моделирования отзывчивости вегетативной массы на изменение действующих условий. В отечественной и зарубежной литературе приведено немало примеров разработки математически моделей роста и развития растений с учетом влияния внешних факторов. Показано, что использование прогностических моделей позволяет своевременно реагировать на изменение условий вегетации и оперативно принимать оптимальные решения по проведению агрономических мероприятий. В настоящей работе впервые установлена зависимость между разностью (аномалией) среднегодовых и текущих сезонных показателей нормализованного вегетационного индекса NDVI и процессом роста и развития растений при влиянии действующих условий. Показано, что использование среднего значения наибольших показателей NDVI (normalized difference vegetation index) вегетационного периода культуры в качестве математического ожидания функции Гаусса-Лапласа для выравнивания зашумленных временных рядов вполне удовлетворяет условиям адекватности их аппроксимации. Получены математические модели влияния фотосинтетических, метеорологических и почвенно-климатических факторов на аномалии NDVI в конкретную фазу развития растений. Наша цель заключалась в получении прогностических моделей состояния процесса вегетации зерновых культур при влиянии действующих условий на основе сравнения среднемноголетних показателей вегетационного индекса NDVI с его текущими сезонными значениями. Исследования проводили на полях научно-образовательного производственного центра «Интеграция» ФГБОУ ВО Орловский ГАУ (Орловская обл.). Посевы озимой пшеницы ( Triticum aestivum L.) сорта Московская 39 занимали площадь 48,1 га, ярового ячменя ( Hordeum vulgare L. sensu lato) сорта Раушан - 17,4 га. Данные по значениям NDVI получали на геопортале «КосмосАгро», а также с применением беспилотного летательного аппарата Агрофлай Квадро 4/17 («Agrofly International», Россия). Компенсация зашумленности данных выполнялась посредством аппроксимации временных рядов функцией Гаусса-Лапласа. Адекватность регрессионных моделей аппроксимации временных рядов NDVI оценивали с помощью F -критерия Фишера и средней ошибки коэффициента аппроксимации; точность прогностических моделей подтверждалась показателем средней абсолютной ошибки Mean Absolute Percentage Error. В результате были получены временные ряды среднего индекса NDVI для изучаемых культур по данным многолетних наблюдений и рассчитаны текущие значения NDVI вегетационного сезона 2021 года. Установлен близкий к нормальному характер распределения временных рядов вегетационного индекса. Определены максимальные (пиковые) значения NDVI, составляющие 0,71 для озимой пшеницы и 0,54 - для ярового ячменя и приходящиеся на июнь, независимо от культуры. Цели выравнивания зашумленных временных рядов NDVI сельскохозяйственных культур в период вегетации наиболее полно удовлетворяет ассиметричная функция Гаусса-Лапласа, где в качестве математического ожидания применено среднее значение наибольших показателей NDVI вегетационного периода культуры. На основе показателя аномалий NDVI получены математические модели, описывающие влияние фотосинтетических, метеорологических и почвенно-климатических факторов на состояние культур в период конкретной фенофазы. Средняя абсолютная ошибка предложенных моделей составляла 9,23 для ярового ячменя, 5,68 - для озимой пшеницы. Таким образом, предлагаемая характеристика DNDVI может быть использована в качестве независимой переменной (критерия оптимизации) в факторных моделях прогнозирования динамики вегетационного процесса.
Бесплатно