Fully constrained linear spectral unmixing algorithm for hyperspectral image analys
Автор: Denisova Anna Yurievna, Myasnikov Vladislav Valerievich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Технологии дистанционного зондирования земли
Статья в выпуске: 4 т.38, 2014 года.
Бесплатный доступ
In this article, a novel linear spectral unmixing algorithm is proposed and analyzed. The linear spectral mixture defines a model of pixels for hyperspectral images by means of spectral signatures. A set of spectral signatures is assumed to be known. Constraints are imposed on the spectral mixture coefficients: the sum of the coefficients is equal to unity and each coefficient is nonnegative. The results of the algorithm quality and speed analysis are described in the paper.
Hyperspectral images, linear spectral mixing, constraints, hyperspectral analysis, least squares method
Короткий адрес: https://sciup.org/14059308
IDR: 14059308