Centroid averaging algorithm for a clustering ensemble
Автор: Tatarnikov Vadim Vladimirovich, Pestunov Igor Alekseevich, Berikov Vladimir Borisovich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 5 т.41, 2017 года.
Бесплатный доступ
A collective approach to cluster analysis is considered in the paper. An algorithm of centroid averaging is proposed. The algorithm allows constructing the consensus partition of a dataset into clusters, using a set of partitions built with any centroid-based algorithm. We discuss results of applying the proposed algorithm to modeled data and for the segmentation of hyperspectral images with noise channels. Some details of implementation in a multithreaded environment that allows increasing the algorithm performance are given.
Clustering ensemble, k-means, centroid, hyperspectral image analysis
Короткий адрес: https://sciup.org/140228664
IDR: 140228664 | DOI: 10.18287/2412-6179-2017-41-5-712-718