Analysis of energy consumption during plowing using a motor-block with moldboard plow
Автор: Kupryashkin Vladimir F., Ulanov Aleksandr S., Naumkin Nikolay I., Bezrukov Anatoliy V., Shlyapnikov Michail G.
Журнал: Инженерные технологии и системы @vestnik-mrsu
Рубрика: Процессы и машины агроинженерных систем
Статья в выпуске: 3, 2019 года.
Бесплатный доступ
Introduction. Plowing the soil is a major operation in the cultivation of crops. It is one of the most labor-intensive operations in crop production, accounting for about 40 % of all energy costs. Most of these costs fall on consumed power, ensuring the effective functioning of the motor-block unit with a moldboard plow. Therefore, estimation of power consumed by motor-blocks is the urgent task. Materials and Methods. To solve the problem of determining the energy characteristics of the motor-block unit during plowing, a theoretical analysis was carried out, including values of torque, traction force on running wheels, resistance during their rolling and resistance force at the jointers-depleted plow, with the account for the geometry of the plowing unit based on the motor-block. Dependences of power consumption and specific energy consumption were obtained using the method described below. Results. As a result of our analysis of the power balance, we obtained dependences to find power consumption, as well as the specific energy intensity of plowing the soil with a motor-moldboard plow, which allowed for energy assessment of the functioning of the agricultural unit. Discussion and Conclusion. On the basis of these dependences of the required power and specific energy consumption, taking into account experimental data on interaction of the plow with the soil, design parameters and technological modes of operation of the agricultural unit consisting of motor unit Neva MB-2S-7,5 Pro and plow P1-20/3, were obtained to facilitate the choice of optimal modes of their functioning.
Soil, motor-block, moldboard plow, stability of movement, power, energy consumption
Короткий адрес: https://sciup.org/147220628
IDR: 147220628 | DOI: 10.15507/2658-4123.029.201903.414-427