Analysis of the stress-deformed state of the prismatic support of the lever-grading device of test stands for liquid rocket engines
Автор: Begishev A.M., Zhuravlev V.Y., Nazarov V.P., Torgashin A.S.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Авиационная и ракетно-космическая техника
Статья в выпуске: 1 т.23, 2022 года.
Бесплатный доступ
The force measuring device is a part of the bench force measurement system required for direct measurement of the rocket engine thrust during the test. One of the common types of force-measuring device calibration systems is a lever-type calibration device. The simplicity of the kinematic scheme is one of the main advantages of its use as a calibration system. Along with this, the disadvantages of this scheme are concentrated in the supporting elements of the lever system, since it is the wear of the supports that leads to the accumulation of a systematic error of the entire system with a proportional deterioration in the accuracy of the force measurement process. The aim of the work was to analyze the features of prismatic supports used as part of a lever-based calibration device of a force-measuring device, as well as to simulate the stress-strain state of a model of a real prismatic support used in an existing force-measuring system. The work considers the closest theoretical information associated with calculating the stress distribution in the wedge and half-plane in accordance with the plane problem of the theory of elasticity. The selection of the mechanical properties of materials was carried out depending on the specified hardness indicators, as well as the modeling of the contact problem in a given prismatic support, depending on the angle of inclination of the prism in relation to the pad, using the static analysis of the Solidworks Simulation software package. The calculation results are given, conclusions are drawn on the work done.
Firing test stand, force-measuring device, prismatic support, solidworks simulation system, static analysis of the stress state
Короткий адрес: https://sciup.org/148324387
IDR: 148324387