Anti-icing indicator polymer coating with built-in fiber-optic PEL-sensor for indication, location and de-icing of aerodynamic surfaces

Бесплатный доступ

A mathematical model was developed and a numerical modal analysis of the anti-icing mode of operation of the new indicator polymer coating with an integrated optical fiber piezoelectroluminescent (PEL) sensor for icing indication, location and self-cleaning from icing of aerodynamic surfaces was given. The fiber optic PEL-sensor is located in the plane of the coating. Receiver-analyzer of informative integral intensities of light signals is installed at output from optical fiber of sensor. Alternating voltage generator is connected to outputs of two control electrodes of sensor. The anti-icing function of the polymer coating is carried out automatically by thermo-mechanical actuation of the PEL-sensor on the appeared ice layer (on the ice crust of the coating) and only in those local areas of the coating where the thickness of the attached ice layer has reached a given critical value. Quality of cleaning from icing of surface of anti-icing coating is controlled by algorithms of digital processing of informative light signals at output from optical fiber of PEL-sensor. As a result, improved efficiency and control of de-icing on aerodynamic surfaces is achieved, especially for extended surfaces. The energy efficiency of the anti-icing polymer coating is increased due to the locality and self-control of the icing process. The modal analysis was carried out in an ANSYS finite element analysis package based on a numerical solution of the electrical-elasticity boundary value problem of stationary electromechanical oscillations of the representative cell of the anti-icing indicator polymer coating in the absence and presence of an ice layer of different thickness. Results of calculation of natural frequencies and forms of oscillations of representative cell of anti-icing coating, amplitude-frequency characteristics of mechanical stresses at coating/ice boundary for different values of thickness of attached ice layer for case of action of harmonic "force" in form of control electric voltage on electrodes of built-in PEL-sensor are presented.

Еще

Indicator polymer coating, anti-icing coating, built-in fiber optic sensor, piezoeffect, electroluminescence, numerical modeling

Короткий адрес: https://sciup.org/146282373

IDR: 146282373   |   DOI: 10.15593/perm.mech/2021.4.11

Статья научная