Automatic landscape image annotation
Автор: Proskurin Alexander Victorovich
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Математика, механика, информатика
Статья в выпуске: 3 (55), 2014 года.
Бесплатный доступ
The image retrieval in the Internet and specialized datasets is the important task. For such retrieval is expedient to apply the systems of automatic image annotation (AIA) based on low-level features. Due to wide variety of images, it's sometimes useful to categorize images and to customize methods of AIA according these categories. In this article, the automatic landscape image annotation (ALIA) is discussed. Natural objects (rocks, clouds and etc.) on the landscape images often include just one texture. Because of that, for ALIA enough use of the machine translation model. In this model, the process of image annotation is analogous to the translation of one form of representation (image regions) to another form (keywords). Firstly, a segmentation algorithm is used to segment images into object-shaped regions. Then, cauterization is applied to the feature descriptors that are extracted from all the regions, to build visual words (clusters of visually similar image regions). Finally, a machine translation model is applied to build a translation table containing the probability estimations of the translation between image regions and
Landscape images, automatic annotation, алгоритм сегментации jseg, algorithm jseg, texture features
Короткий адрес: https://sciup.org/148177263
IDR: 148177263