Automated simulation system of electrical characteristics of spacecraft power system

Автор: Mizrah E.A., Poymanov D.N., Balakirev R.V., Tkachev S.B.

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: Авиационная и ракетно-космическая техника

Статья в выпуске: 3 т.17, 2016 года.

Бесплатный доступ

In the article authors examined problems of electrical tests of spacecraft electrical systems (SES) with special simulation systems to reproduce electrical characteristics of spacecraft power system (PSS ECSS). The relevance of these systems and disadvantages of known simulators are discussed. A new automated system, which can be used to carry out SPS electrical tests in work and emergency modes, study noise immunity of spacecraft electrical systems with given noise magnitude, frequency and shape is considered. ECSS provides stable 27 and 100 V power to SES and contains two special power supplies (ISEP) providing main functions and control computer. In the article the authors show that combining regulated power supply and noise signal generator in ISEP leads to significant topology simplification, improvement of operation characteristics and better reproduction of spacecraft power system impedance frequency characteristics. In the article topology of PSS simulator with output voltage range up to 100 V (ISEP-100), containing constant voltage supply, output voltage regulator, multifunctional low-latency protection device (LLPD) and digital control and measurement system, is examined. Output voltage regulator based on dual power regulation topology, which can provide required static and dynamical properties and satisfactory specific power. Continuous voltage regulator (CVR) provides energy quality, reproduce required impedance frequency characteristics of onboard SPP, allows to induce test signals of required shape on power bus in frequency range up to 1 MHz; Switching regulator limits power dissipation of CVR by voltage regulation on CVR transistor current regulator. Developed and studied LLPD, which is able to shut down SES on overvoltage and overcurrent conditions above specified levels and provides AC network phase loss detection. LLPD delay can be defined in range 2 to 1500 us. Developed PSS ECSS allows carrying out entire program of spacecraft electrical systems tests and operated in Academician M. F. Reshetnev Information Satellite Systems, Zheleznogorsk, where it was used for onboard repeaters tests of various spacecrafts.

Еще

Spacecraft, power supply system, test, simulation, electrical characteristics

Короткий адрес: https://sciup.org/148177612

IDR: 148177612

Статья научная