Ballistic limit equations to optimize the system for spacecraft protection against micrometeoroids and space debris
Автор: Mironov Vadim Vsevolodovich, Tolkach Mikhail Aleksandrovich
Журнал: Космическая техника и технологии @ktt-energia
Рубрика: Проектирование, конструкция и производство летательных аппаратов
Статья в выпуске: 3 (14), 2016 года.
Бесплатный доступ
The tasks of evaluating the risk of damage and coming up with measures to mitigate it and develop a system for protecting spacecraft (SC) against exposure to high-velocity particles of micrometeoroids and space debris (MM/SD) are of crucial importance. The SC damage risk depends on the properties of structural elements and the rate of flow of high-velocity particles. The ability of any structural element of a SC to withstand an impact of a high-speed particle is known to be described by ballistic limit equations. This paper provides a feasibility analysis of using ballistic limit equations that had been developed to date in order to optimize single-wall and multiple-wall SC protection against MM/SD particles. What is meant by the optimization is a comparison of relative efficiency of different materials configurations of protection against high-speed particles. The paper provides general requirements for ballistic limit equations that are suitable for conducting a comparative analysis of protection against MM/SD. It proposes equations that take into account to the greatest extent possible the various factors involved in the assessment of protection against high-velocity MM/SD particles.
Micrometeoroid, space debris, ballistic limits equations, micrometeoroid shield for spacecraft
Короткий адрес: https://sciup.org/14343525
IDR: 14343525