Block principal component analysis for extraction of informative features for classification of hyperspectral images
Автор: Pestunov Igor A., Melnikov Pavel V.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Статья в выпуске: 6 т.8, 2015 года.
Бесплатный доступ
This paper proposes a method to reduce the dimensionality of feature space for recognition of hyperspectral images. The method consists of dividing the spectral channels into blocks with high in-block correlation and the subsequent application of principal component analysis. It is shown that the proposed method allows to reduce the number of channels used in the classification by an order of magnitude with no signifi cant degradation of recognition quality.
Hyperspectral image, informative feature extraction, principal component analysis, supervised classification, support vector machine
Короткий адрес: https://sciup.org/146114998
IDR: 146114998 | DOI: 10.17516/1999-494X-2015-8-6-715-725