Centralized adaptive algorithm for the procedure of optimal conditional search for the place of failure of dynamic systems

Бесплатный доступ

Modern and promising dynamic systems of aviation weapon systems of the Aerospace Forces (hereinafter for brevity in the text - the system) are characterized by a more complex structure and increased requirements for reliability and efficiency of functioning. Moreover, systems of generation 4 ++ and 5 are quite unique and (or) small-scale, and their constituent elements are basically miniature and expensive, therefore, a prerequisite for fulfilling the requirements for traceability to systems and constituent elements is the maximum possible preservation of the quality of the initial basis with the inevitable new interpretation of additional information. Further introduction of artificial intelligence technologies into the practice of solving problems of technical diagnostics makes it possible to obtain adequate results with almost any accuracy. The reliability of the results will be determined solely by the punctuality of the data assignment and the completeness of the mathematical description of systems, processes and events in the subject area under consideration. Therefore, it should be expected that the further development of the theory and practice of technical diagnostics will follow the path of a deeper study of the physical processes occurring in systems, and a more accurate mathematical specification of procedures for finding the place of failure of systems. The aim of the work is to establish the development of an interconnected set of mathematical and logical block diagrams for obtaining and applying diagnostic knowledge in the software and mathematical support of modern and advanced onboard means of monitoring the technical state of systems. The priority direction in such studies is the differentiated selection of approved methods of technical diagnostics with the choice of the appropriate mathematical and algorithmic apparatus for direct probabilistic modeling of systems. A block diagram is presented and a variant of the practical application of the developed algorithm for sequential recognition of system failures (hereinafter referred to as an algorithm, if it is clear from the context of the presentation of the material that it is the developed algorithm) is considered. By using the algorithm, there is no need for decomposition of systems, and the potential for multiple repetitions of the results of a random process of changing the technical states of systems predetermines the possibility of obtaining large samples with high accuracy of software compilation.

Еще

Elementary check, diagnostic sign, probability of a class of the technical condition of the system, method for finding the place of a system failure, decision method, average risk of making a technical diagnosis decision

Короткий адрес: https://sciup.org/148322028

IDR: 148322028   |   DOI: 10.31772/2712-8970-2021-22-2-275-287

Статья научная