Numerical modeling of electroelastic fields in the surface piezoelectric luminescent optical fiber sensor to diagnose deformation of composite plates

Бесплатный доступ

We developed a three-dimensional numerical model of a piezoelectric luminescent optical fiber sensor fixed on a composite’s plate. The computational region of the sensor is the optical fiber with two concentric (with 6 sectors) shells of electroluminescent and piezoelectric materials, two control electrodes on interface surfaces, such as optical fiber-electroluminophore and piezoelectric-cover. The external sensor’s cover is made in the form of a semi-elliptic cylindrical polymer shell, which rectangular base is fixed on the surface of the fiberglass plate. In the piezoelectric shell sectors, the polarization directions of the PVDF transversal-isotropic polymer piezoelectric are different and non-planar for any three sectors. Deformation of the plate causes deformation of the sensor fixed on its surface, as well as the occurrence of informative piezoelectric fields in it, thus the occurrence of informative glows of electroluminescent elements. As a result, we find the requested information about the combined deformed state of the composite plate along the length of the sensor based on the digital processing of the integral intensities of the polychrome light signals at the output of the optical fiber. In simple cases of electric and mechanical loads, we present new numerical results of simulating the distribution of non-uniform electroelastic fields in the sensor multiphase volume, the sensor’s external cover and inside fragment of the composite plate. Loading of the sensor-covering-plate system is performed by controlling electric voltage on the sensor’s electrodes and the plate’s mechanical deformation by stretching along the transverse and longitudinal axes, as well as by twisting around these axes and bending in transverse and longitudinal planes. Numerical values of the control and informative transfer coefficients of the piezoelectric luminescent optical fiber sensor are determined, which makes it possible to perform a reliable and high-precision diagnostics of complex deformations of the composite plates and design sensors of this type.

Еще

Piezo-electro-elasticity, mechanical and luminescent effect, optical fiber, surface sensor, composite, numerical modeling

Короткий адрес: https://sciup.org/146281994

IDR: 146281994   |   DOI: 10.15593/perm.mech/2020.2.06

Статья научная