ANSYS numerical modeling of electroelastic fields in the piezoelectro luminescent fiber-optical sensor diagnosing the composite volume deformed state

Бесплатный доступ

The paper is concerned with the developed numerical 3D model of the piezoelectro luminescent fibre-optical sensor aiming to diagnose the volume deformed state in a composite structure using ANSYS finite element analysis. In general, the model is a parallelepiped with the sensor fragment located on the central axis. The sensor is the sector-compound layered cylinder made from the central optical fiber with electroluminescent, piezoelectric layers and an external uniform elastic buffer layer. The electroluminescent and piezoelectric layers of the sensor are divided by the radial-longitudinal borders, which are shared by both layers, into the geometrically equal six "measuring elements" in the form of the cylindrical two-layer sectors. The directions of the volume polarization for piezoelectric phases and frequencies of lights for electroluminescent phases are different in various sectors. The piezoelectric phases of all the six sectors are represented by one and the same transversal-isotropic polymeric piezoelectric PVDF material but with different acoplanar directions of volume polarization. The translucent "internal" thin cylindrical operating electrode is located between the optical fiber and electroluminescent layer, and the "external" operating electrode is located between the piezoelectric and buffer layers of the sensor. The properties of the parallelepiped are equated to the transversal-isotropic properties of the unidirectional fibrous fibreglass; various simple monoaxial or shear deformations of the parallelepiped are set through the corresponding displacements of points of his sides. The numerical modeling of non-uniform coupled electroelastic fields in the sensor fragment elements is made. The sensor is implemented in the deformed composite volume of fibrous fibreglass and the operating voltage acts on his electrodes. The numerical values of the informative and operating coefficients of the sensor are calculated; these coefficients are necessary to diagnose the components of deformation tensors on macro- and microlevels of the composite.

Еще

Piezoelectroelasticity, mechanical-luminescent effect, optical fiber, sensor of volume stressed state, composite, numerical modeling

Короткий адрес: https://sciup.org/146211686

IDR: 146211686   |   DOI: 10.15593/perm.mech/2017.3.09

Статья научная