Numerical algorithm for optimization of a process of conical flying model equilibration on a vertical balancing stand

Бесплатный доступ

High complexity and cost of developing flying models necessitate the use of such design and production techniques that would ensure the best flight technical and technological characteristics of the model also would rise of its operation effectiveness. These techniques include the experimental control method of flying model’s mass-inertia asymmetry parameters during final assembly of the model. The problem of process optimization in bringing parameters of mass-inertia asymmetry of the conical flying model to specified standards is set and solved for the process of balancing in dynamic mode in the article. The model as a component of prefabricated rotor is being balanced on a low-frequency dynamic vertical stand on gas bearings. As a criterion of optimization the minimum center-mass shift from geometrical axis of the model is taken at simultaneous maintaining the pre-set standard for the angle of deviation of principal longitudinal centroidal axis of inertia relative to the above axis. The work relies on engineering model, developed from refined mathematical model of balancing the conical body of rotation, which the only correction plane is designed to be positioned close to cone face, away from the center mass of the body. This engineering model describes all stages of the process of bringing mass-inertia asymmetry parameters to the values not exceeding specified limiting values. Before balancing experiment the weigh, longitudinal center of mass and inertia moments of the flying model have to be controlled with use of measurement equipment. Balancing algorithm, easy-to-realized by modern computers, was analyzed. Numerical illustration of balancing is given. The engineering model enables omitting intermediate steps of balancing, reducing them to one step (as a rule), and shortening the balancing time, as well. In one step of balancing the engineering model permits either bringing parameters of mass-inertia asymmetry of the flying model to specified standards, or diagnosing impossibility of attaining the specified standards with available design of flying model. Application of methods and instruments of dynamic balancing allows increasing accuracy in both defining and assuring requirements for the parameters of mass-inertia asymmetry as compared with equipment based on methods of static balancing, and, hence increasing efficiency of flying models operation. Design algorithm and balancing method are experimentally tested at newly-designed vertical dynamic stand on conical gas bearings.

Еще

Balancing stand, rotation body, axis of symmetry, axis of inertia, moment of inertia, mass distribution, correction plane, misbalance, algorithm, balancing calculation, step of balancing

Короткий адрес: https://sciup.org/148177562

IDR: 148177562

Статья научная