Formation of structure computer model for assessment of the impact parameters of an onboard relaying complex on a signal

Автор: T.A. Zubov, A.A. Baskova, V.V. Sukhotin

Журнал: Космические аппараты и технологии.

Рубрика: Ракетно-космическая техника

Статья в выпуске: 4, 2018 года.

Бесплатный доступ

Important development stage of an onboard relaying complex is computer simulation which is capable to estimate influence of these or those parameters of a complex on a signal. Article is devoted to development of structure of computer model for impact assessment of parameters of an onboard relaying complex on a signal. Fundamental nodes of model a ground station – an onboard relaying complex – a ground station are nodes of forming of influence, through relaying (reaction), the analysis of reaction. In article the principle of forming of a signal of DVB-S2 standard is considered and signal and code construction is given. The standard structure of an onboard relaying complex containing the receiving and transmitting antenna feeder device, the input and output multiplexer, set of power amplifiers is disclosed. The structure of computer model having necessary functionality is developed namely: reflection of a physical essence of a high-frequency path of onboard relaying complex and ground station at the level of the main nodes of passing (the mixer, a heterodyne, the power amplifier, the inlet and outlet filter); possibility of change of radio engineering characteristics of model; forming in model of a measuring signal using the DVB-S2 standards; measurement of probability of emergence of bit errors when passing a signal with different signal and code constructions through model; simulation of signal distortions in the environment of distribution. The plan of forming of model in the MATLAB/Simulink environments consisting of ten points is presented. The corresponding conclusions are drawn.

Еще

Onboard relaying complex, spacecraft, computer simulation, signal and code constructions, DVB-S2, block diagram, MATLAB/Simulink

Короткий адрес: https://sciup.org/14114727

IDR: 14114727   |   DOI: 10.26732/2618-7957-2018-4-192-197

Статья