Identification of parameters of an induction motor with auto-correlated speed error
Автор: Ivanov D.V., Sandler I.L., Makarov S.I.
Журнал: Известия Самарского научного центра Российской академии наук @izvestiya-ssc
Рубрика: Информатика, вычислительная техника и управление
Статья в выпуске: 3 т.26, 2024 года.
Бесплатный доступ
The article proposes a method for parametric identification of asynchronous motors with autocorrelated speed error. The rotation speed of an asynchronous motor shaft in real identification systems is always measured with errors. Errors can be associated both with errors in speed determination sensors and with errors that arise when determining speed without sensors. Errors can be associated both with errors in speed determination sensors and with errors that arise when determining speed without sensors. Discretization, as well as estimation of derivative values, also introduces additional errors. Typically, the values of the autocorrelation error function are unknown. The article proposes a method for parametric identification of squirrel-cage induction motors based on extended instrumental variables. The simulation results showed that the proposed identification method based on extended instrumental variables (EIV) allows us to obtain more accurate parameter estimates than the least squares method (OLS) used in such cases. The results of this article can be applied in the development of predictive diagnostic systems.
Asynchronous motor, errors in variables, least squares method, k-parameters, consistent estimate, autocorrelated noise, speed error
Короткий адрес: https://sciup.org/148329370
IDR: 148329370 | DOI: 10.37313/1990-5378-2024-26-3-130-139