Research and modeling of viscoelastic behavior of elastomeric nanocomposites

Бесплатный доступ

The paper presents results of studying mechanical properties of polymer composites depending on types of filler particles (granular - carbon black, nanodiamonds; layered - graphene plates; fibrous - single-walled nanotubes). These nanofillers differ greatly from each other in their structure and geometry. A significant difference in behavior of nanocomposites was revealed even with little introduction of particles into the elastomer. The highest level of reinforcement of the matrix was obtained when single-wall nanotubes and detonation nanodiamonds were used as fillers. The viscoelastic properties and the Mullins softening effect [1-4] were investigated in experiments performed with material samples subjected to complex uniaxial cyclic deformation. In these experiments, the amplitude of deformations was changed step by step; and at each step a time delay was specified to complete rearrangement processes of the material structure. It was found that a pronounced softening effect after the first cycle of deformation and significant hysteresis losses occur in the material filled with single-walled nanotubes. These characteristics are insignificant for the rest of nanocomposites until elongation increases twofold. In accordance with the obtained results, a new version of the mathematical model to describe properties of the viscoelastic polymer materials was proposed. The constants of the constitutive relations were calculated for each material; the theoretical and experimental load curves were compared. As a result, the introduced model is able to describe the behavior of elastomeric nanocomposites with a high accuracy. Moreover, this model is relatively easy to use, suitable for a wide range of strain rates and stretch ratios and does not require the entire history of deformation as needed for integral models of viscoelasticity.

Еще

Elastomeric nanocomposites, complex uniaxial cyclic testing, mullins softening effect, viscoelastic model

Короткий адрес: https://sciup.org/146282056

IDR: 146282056   |   DOI: 10.15593/perm.mech/2021.2.08

Статья научная