Investigation of the possibility of producing sodium alginate from the product of processing fucus algae

Бесплатный доступ

The possibility of making sodium alginate from a by-product (fucus semifinished product), obtained by producing an extract from brown algae of the Fucus family – fucus bubbly (F.vesiculosus), has been studied. It has been found that up to 80% of the alginic acids contained in the feedstock remain in the fucus semi-finished product, which can also be isolated and used. The principal technology of sodium alginate from the fucus semifinished product is developed, consisting of the following main stages: preparation of raw materials, reduction, pretreatment, extraction of alginates, isolation of alginic acid, production of sodium alginate, drying. The parameters of the technological scheme close to optimal parameters were determined (the duration of extraction of alginates by sodium carbonate solution is 3 hours, the active acidity value for the isolation of alginic acids is 6M hydrochloric acid: pH = 3). As a result of optimization of the technological scheme, it was possible to increase the yield and improve the quality of the product: the yield of sodium alginate was 4.5% (which is 20% higher than the original), the content of alginic acids increased by 7% and was 92% in terms of dry matter, kinematic the viscosity increased almost twofold - its value reached a value of 500 cSt. Investigations carried out by the Fourier method of IR spectroscopy on the Shimadzu IR Tracer-100 (Japan) showed that the sodium alginate obtained from the fucus semifinished by optimized technology is not inferior in quality to sodium alginate produced from laminaria (Sigma Aldrich (USA).) Sodium alginate, made from the fucus semi-finished product, can be used as one of the components of gelling fillings for the production of canned fish in jellies. A technological scheme for processing algae is proposed.


Brown algae, fucus, sodium alginate, extract, alginic acid kits, ir spectroscopy, canned jelly, technology, semifinished product, fillings

Короткий адрес:

IDR: 140229954   |   DOI: 10.20914/2310-1202-2018-1-161-167

Статья научная