Experimental studies of mechanical properties of implants for plasty of hernial defects

Бесплатный доступ

The success of modern hernioplasty is associated with the introduction of synthetic endoprostheses (mesh implants) from various polymers. However, a significant number of complications arising, including those involving the erroneous application of an implant, make it necessary to get a deeper understanding of mechanisms of not only biological but also mechanical behaviors of structures of this type During the work, a technique is proposed to assess deformation properties of mesh implants made based on foam and polyester. These implants are used in surgical operations with non-stretching hernioplasty, which are now most common. As a result, tests were conducted to study the deformation of the mesh implant type SPMM, TCM, Reperen, TEC under the influence of abdominal pressure under quasi-static conditions. In order to conduct the study we completed the development of the proposed methodology. The data of the deformation dependence on intra-abdominal pressure were obtained. As a result, a research methodology and a mathematical model have been developed that describe the mechanical behavior of the mesh implant installed in the abdominal cavity under conditions of non-stretching hernioplasty, which is under the influence of intra-abdominal pressure. The analysis of mechanical behavior for various sizes of working areas of a reticular implant under the conditions of various values of intraperitoneal pressures in a range from low (2 kPa) to high (20 kPa) pressures is carried out. The obtained results allow an assessment of the mechanical behavior of implants and their applicability for a clinical case depending on defect sizes in living tissues and expected intra-abdominal pressures.

Еще

Mesh implant, experimental mechanics, surgical materials, mechanical properties, mechanical testing methods, endoprosthesis, hernioplasty

Короткий адрес: https://sciup.org/146281929

IDR: 146281929   |   DOI: 10.15593/perm.mech/2019.2.14

Статья научная