Energy conditions for the formation of magnesium hydride

Бесплатный доступ

In the present article we consider a novel approach to analyze the processes and kinetics of transformation of magnesium to hydride. Here approach consists to take into account the contributions of mechanics factors such as the work of external forces, the energy of elastic deformation and the energy required to form a unit volume nucleate of new phase. Request for a stable state of either a mechanical system or thermodynamic conditions governing a phase transformation, is to determine a minimum value to the total energy of the system. Analyzing the stability conditions needed when forming a metal hydride nucleus at constant temperature and pressure needs to consider the following: - the volumetric effects at the phase transformation, - the ratio of elastic moduli of metal to hydride phase, - the work spent at the formation of a unit volume of hydride. Under these considerations, it was shown that the most energetically favorable is forming an ellipsoidal hydride nucleus. Moreover, the larger difference in semi-axes, the more stable ellipsoid nucleus. Then, calculations of the stress-strain level states on both sides of the metal/hydride interface have been carried out. It was shown that the near-boundary range during the phase transformation is the place where accumulate inhomogeneous and intense stresses, which can contribute to two parallel processes. Firstly, increase of hydrogen concentration could appear in the distorted area. Secondly, a local accumulation of incoherent boundaries in between the two phases will develop stresses exceeding by more twice the shear yield stress. The presence of these compression zones could give rise new defects such as dislocations, micro-cracks. Consequently this should lead to decrease in magnitude of the powder of material.

Еще

Phase transition, energy conditions, magnesium hydride, stress-strain state

Короткий адрес: https://sciup.org/146282469

IDR: 146282469   |   DOI: 10.15593/perm.mech/2022.2.03

Статья научная