Morphofunctional state of peripheral blood erythrocytes after femtosecond laser treatment

Бесплатный доступ

To estimate femtosecond laser effect on morphofunctional state in peripheral blood erythrocytes exposed to various radiation energy density we determined the level of malonic dialdehyde (MDA), activity of superoxide dismutase (SOD), catalase and glutathione-transferase (GT). Scanning probe microscopy was employed for assessment of erythrocyte topology and rigidity. Erbium fiber laser with the pulse duration of 82*10-15s, peak and average power of 6 kW and 1.26 mW, respectively, wavelength of λ 1,55 μm and energy density within the range from 0.10 to 2, 70 J/cm2 was employed for the experiment. MDA level indicating lipid peroxidation was found to change very slightly within the range from 430 to 509 mmol / l. It was revealed that the activity of antioxidant enzymes - SOD and catalase depend on the energy density. Thus, the most pronounced activity increase was registered for the energy density of 0.10 J/cm2. GT activity for all selected radiation energy densities was similar to control group. Data readout from Scanning probe microscopy indicates erythrocyte topology modification as well as undulatory increase of erythrocyte membrane rigidity with rising femtosecond laser radiation energy density.

Еще

Femtosekond laser radiation, scanning probe microscopy, erythrocyte

Короткий адрес: https://sciup.org/148201318

IDR: 148201318

Статья научная