Combined Approach to Associative Network Reconstruction: Integrating GraphSAGE and Co-Occurrence Statistics

Автор: Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A.

Журнал: Проблемы информатики @problem-info

Рубрика: Прикладные информационные технологии. Биоинформатика

Статья в выпуске: 4 (65), 2024 года.

Бесплатный доступ

This study focuses on developing a hybrid approach for predicting molecular-genetic interactions, combining graph neural networks (GNNs) and co-occurrence analysis of entities in scientific literature. The method’s effectiveness is demonstrated using the associative network of Escherichia coli, reconstructed using the ANDSystem and its ANDDigest module. Results showed a significant improvement in the accuracy of interaction predictions, in terms of conformity to the original graph topology, compared to using GNNs alone. The combination of approaches improved the Fl-score from 0.815 to 0.97 and reduced the loss function value from 0.405 to 0.08. Evaluation on experimentally confirmed protein-protein interactions also demonstrated high model efficiency (Fl-score 0.9799, Matthews correlation coefficient 0.9597). The proposed method can be applied in analyzing complex biological systems, planning experiments, and optimizing biotechnological processes.

Еще

Escherichia coli, andsystcm, anddigcst, graphsage

Короткий адрес: https://sciup.org/143184145

IDR: 143184145   |   DOI: 10.24412/2073-0667-2024-4-37-45

Статья научная