Combined Approach to Associative Network Reconstruction: Integrating GraphSAGE and Co-Occurrence Statistics
Автор: Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A.
Журнал: Проблемы информатики @problem-info
Рубрика: Прикладные информационные технологии. Биоинформатика
Статья в выпуске: 4 (65), 2024 года.
Бесплатный доступ
This study focuses on developing a hybrid approach for predicting molecular-genetic interactions, combining graph neural networks (GNNs) and co-occurrence analysis of entities in scientific literature. The method’s effectiveness is demonstrated using the associative network of Escherichia coli, reconstructed using the ANDSystem and its ANDDigest module. Results showed a significant improvement in the accuracy of interaction predictions, in terms of conformity to the original graph topology, compared to using GNNs alone. The combination of approaches improved the Fl-score from 0.815 to 0.97 and reduced the loss function value from 0.405 to 0.08. Evaluation on experimentally confirmed protein-protein interactions also demonstrated high model efficiency (Fl-score 0.9799, Matthews correlation coefficient 0.9597). The proposed method can be applied in analyzing complex biological systems, planning experiments, and optimizing biotechnological processes.
Escherichia coli, andsystcm, anddigcst, graphsage
Короткий адрес: https://sciup.org/143184145
IDR: 143184145 | DOI: 10.24412/2073-0667-2024-4-37-45