Components of high-precision electromechanical actuator for system of adaptation transformable space telescope for ultra-low temperatures (4.2 K)
Автор: Jusov A. V. j, Kozlov S.A., Arkhipov M. Ju., Kostrov E.A.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Авиационная и ракетно-космическая техника
Статья в выпуске: 1 т.17, 2016 года.
Бесплатный доступ
The problem was set up of creation of cryogenic actuating mechanisms for transformable space structures. The main issues were emphasized relating to the implementation of the task to create the described devices. The wide area of application and the demand for high-accuracy low-temperature mechanisms were demonstrated. The relevance of the described articles for domestic projects, such as Millimetron, was separately noted. The prototypes forming the basis for the development of the subject matter were demonstrated, and with their examples the consistency of the results was illustrated enabling to reduce costs to be incurred at the time of transition to the design and manufacture of test samples of the product with new properties. As the first stage of development of the claimed subject matter the reworking was proposed of a well-proven engine which is suitable in terms of a number of features and had been used previously in articles with a similar purpose but with a different temperature range. The completed works, the options of embodiment of test samples, the first test in the liquid nitrogen environment, and the functionality check were reported. Further to the research in the claimed area, the conducted experiments showing the functionality of test samples in the liquid helium environment were reported. The unit was described; the diagram and sequence of tests in the liquid helium environment were demonstrated. Comparisons were performed between the electric parameters of samples of different design. Both samples demonstrated the prospective viability of the adopted design and engineering solutions. The problem was set up and the prospects were defined for the nearest future of development of high-accuracy low-temperature vacuum linear electromechanical drives. The results of designing and testing of test samples at helium temperatures (4.2 К) were reported.
Electromechanical actuator, ultra-low temperatures (4.2 k)
Короткий адрес: https://sciup.org/148177535
IDR: 148177535