Quantum mechanics on one-dimentional Cayley-Klein geometries
Автор: Gromov N.A.
Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc
Рубрика: Физико-математические науки
Статья в выпуске: 2 (30), 2017 года.
Бесплатный доступ
Two exactly-solvable quantum mechanical problems, namely harmonic oscillator and Coulomb systems in one-dimensional spaces of constant curvature, are dis- cussed in the context of the unified description of Caley-Klein geometries. Gen- eral expressions for the discrete eigenvalues and corresponding eigenfunctions of Schrödinger operator are obtained by factorization method. In both cases the space curvature appears in these expressions as a parameter. The energy levels of Coulomb particle are shifted in curved space as compared with flat space up or down, depending on curvature sign: positive or negative. The same is held for the oscillator.
One-dimensional constant curvature spaces, schrodinger equation, harmonic oscillator, coulomb particle
Короткий адрес: https://sciup.org/14992890
IDR: 14992890