Human localization in video frames using a growing neural gas algorithm and fuzzy inference

Автор: Amosov Oleg Semenovich, Ivanov Yuri Sergeyevich, Zhiganov Sergey Viktorovich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений: Распознавание образов

Статья в выпуске: 1 т.41, 2017 года.

Бесплатный доступ

A problem of human body localization in video frames using growing neural gas and feature description based on the Histograms of Oriented Gradients is solved. The original neuro-fuzzy model of growing neural gas for reinforcement learning (GNG-FIS) is used as a basis of the algorithm. A modification of the GNG-FIS algorithm using a two-pass training with fuzzy remarking of classes and building of a heat map is also proposed. As follows from the experiments, the index of the correct localizations of the developed classifier from 90.5% to 93.2%, depending on the conditions of the scene, that allows the use of the algorithm in real systems of situational video analytics.

Еще

Human localization, growing neural gas, clustering, fuzzy inference

Короткий адрес: https://sciup.org/14059538

IDR: 14059538   |   DOI: 10.18287/2412-6179-2017-41-1-46-58

Статья научная