Mathematical analysis and modeling of space vector modulated direct controlled matrix converter
Автор: Meshcheryakov V.N., Baykov D.V.
Журнал: Вестник Южно-Уральского государственного университета. Серия: Энергетика @vestnik-susu-power
Рубрика: Устройства аналоговой и цифровой электроники
Статья в выпуске: 1 т.15, 2015 года.
Бесплатный доступ
The matrix frequency converter on controllable AC switches is considered to be a promising solution in the field of energy saving and AC drive development. The potential regenerative braking enlarges the application field of frequency converters and improves their performance. We used the circuit theory fundamentals, methods of mathematical and numerical modeling, linear algebra, the theory of nonlinear discrete control systems and the theory of digital signal processing. The method of mathematical modeling is the main research method. Up-to-date software was used for processing the study results. The study presents a comprehensive mathematical analysis of the power circuit matrix converter as well as a calculation of the operating cycles (switching algorithm) both for low voltage transfer ratio (0.5) and maximum voltage transfer ratio (0.866). The study considers the operation of matrix frequency convertor which is a combination of virtual active rectifier and virtual autonomous voltage inverter with direct control by the method of space vector modulation. The system simulation models are developed by using MATLAB/Simulink, and the simulation results are presented. The study results show a high-performance of the electric drive with matrix converter frequency. Consequently, the device seems to have broad industrial and engineering prospects. Particularly, the converter can successfully be used in doubly fed machines for wind turbines, steel production lines, loading and unloading devices, elevators, lifts, running stands of internal combustion engines. Smaller matrix frequency converter dimensions and weight make it useful in the industries where size and weight of the converter are of vital importance, and the output current limit is not critical, e.g. aircraft and aerospace industry. However, despite their advantages over conventional frequency inverter circuits, circuit matrix converters has not been widely applied due to a large number of semiconductor devices and sophisticated control algorithms.
Matrix frequency converter, simulation model, voltage source inverter, active rectifier, space vector control
Короткий адрес: https://sciup.org/147158292
IDR: 147158292 | DOI: 10.14529/power150103