Models of molecular dynamics: a review of EAM-potentials. Part 2. Potentials for multi-component systems

Бесплатный доступ

This article is the second part of the review of modern approaches and works devoted to the construction of interatomic interaction potentials using the embedded atom methodology (the so-called EAM potentials). This part of the review is devoted to one of the most relevant problems in molecular dynamics, which is the problem of constructing potentials that would be suitable for describing the structure, physical and mechanical properties of multi-component (binary and ternary) materials. We have outlined the emerging papers, in which the approaches to the construction of cross-interaction functions for Ni and Cu alloys were proposed, both with the use of the EAM methodology, and a potential of the Finiss-Sinclair type, that differed in the construction procedure. The works, in which different approaches to the construction of potentials are compared, as well as the procedure for identifying parameters using the example of the same multicomponent systems (such as Al-Ni or Cu-Au). In addition, some ternary systems, for example, Fe-Ni-Cr, W-H-He or U-Mo-Xe are of a particular interest as key materials for nuclear energy; and recently they have been actively studied as materials that could be used in thermonuclear rectors. This is to present the examples of works, which offer and investigate the potentials for the description of multicomponent systems, suitable for the aerospace industry, which are made, first of all, on the basis of Ni. The results of the investigations of various intermetallic compounds are considered, and studies have been performed, in which it was possible to accurately describe the phase diagrams of compounds and calculate the characteristics of phase transitions.

Еще

Molecular dynamics, interaction potential, embedded atom method

Короткий адрес: https://sciup.org/146281855

IDR: 146281855   |   DOI: 10.15593/perm.mech/2018.2.11

Статья научная