Modeling of prestressed plates with material inhomogeneity, perforations and inclusions

Бесплатный доступ

In the present article, we propose the model of in-plane oscillations of inhomogeneous prestressed plates, both solid ones and those containing a set of holes and inclusions made of different materials. We treat the plates’ mechanical properties and the prestress tensor components in the considered 2D problem statement as functions of two coordinates. In order to formulate the boundary value problems of steady-state in-plane vibrations of plates, we employ the general linearized formulation for an elastic body under conditions of an initial stress-strain state. The developed vibration model makes it possible to specify an arbitrary type of prestress state in the plate in the form of analytical dependences, as well as numerically, by solving the corresponding static problem, in which prestresses arise as a result of applying some initial load. To implement the finite element (FE) approach to solving the problems, we formulated the weak problem statement by projecting the original governing equations on the field of test displacements satisfying the essential boundary conditions. To increase the accuracy of calculations for plates with holes and inclusions, the local refinement of FE meshes are used. The proposed approach to calculating plate vibrations is implemented as a software package via FreeFem++. A method for assessing the effect of prestress on dynamic plates’ characteristics under various types of loads is described; a comprehensive analysis is carried out to identify the probing modes, frequency ranges and response pickup areas, most sensitive to the prestress changes, for each of the plates. We systematize and generalize the results obtained during the analysis, give a few practical recommendations on the choice of probing modes for each type of the plates considered, allowing to perform the most efficient schemes for identifying the prestress components.

Еще

Prestress, elastic plates, inhomogeneity, perforation, inclusions, sensitivity analysis, acoustic method, finite element method, freefem++.

Короткий адрес: https://sciup.org/146282674

IDR: 146282674   |   DOI: 10.15593/perm.mech/2023.3.02

Статья научная