Modified boron-carbon nanotubes as effective sensor devices for environmental pollution control
Автор: Dryuchkov E.S., Zaporotskova I.V., Zvonareva D.A., Kozhitov L.V.
Журнал: НБИ технологии @nbi-technologies
Рубрика: Нанотехнологии и наноматериалы
Статья в выпуске: 2 т.17, 2023 года.
Бесплатный доступ
Recently, more and more people have become aware of the need to protect the environment and find new ways to protect our planet from various types of pollution. In this regard, science and technology play an important role in finding new solutions to protect the environment. One innovative development is boron-carbon nanotubes, which contain equal amounts of boron and carbon atoms. Modification of such nanotubes with an amine group would allow to use them for creation of highly sensitive sensor devices, which would help to control the levels of lithium, sodium, potassium in the environment and prevent their negative impact on nature and human health. In this article, a theoretical study of the sensing properties of a functionalized amino-group boron-carbon nanotube of the zig-zag type (6.0) containing equal amounts of carbon and boron is discussed. Such a nanotube could act as an element of a sensor device for environmental protection. The simulation was performed within a molecular cluster model using the DFT computational method, the B3LYP functional, and the 6-31G basis set. It is concluded that the system can be used to detect the presence of alkali metal atoms.
Boron-carbon nanotube, sensory properties, functional amino group, molecular cluster model, alkali metals, density functional theory, quantum-chemical research
Короткий адрес: https://sciup.org/149143228
IDR: 149143228 | DOI: 10.15688/NBIT.jvolsu.2023.2.5