Modernization directions of the hardware and software of «Krabik-BM» radio navigation system
Автор: Aleshechkin A.M., Feoktistov D.S.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Математика, механика, информатика
Статья в выпуске: 3 т.16, 2015 года.
Бесплатный доступ
Despite the widespread and easy use of satellite navigation systems (SNS), ground-based radio navigation systems (RNS) remain one of the main means of navigating maintenance of a number of objects, such as ships. Using RNS helps to achieve high accuracy in objects positioning, and to eliminate a number of disadvantages of SNS. From the beginning of the 2000s in the Siberian Federal University in collaboration with the Research and Production Enterprise “Radiosvyaz” were resumed the works on the development and serial production of terrestrial RNS UHF-range “Krabik-BM”, using the phase measurement techniques and navigation options designed for geodetic gridding sea surface objects. This system consists of several aligned transceivers that can be used as a ship station, and the supporting shore stations by selecting an appropriate operating mode. In 2003 the serial production of the RNS and its delivery to the customer were started. Nowadays, system solutions and electronic components, used in the design of this, are obsolete. Therefore, there was a task of modernization of transceivers of the RNS mentioned, using modern components, design tools and software. In the present article the direction to update the hardware of the RNS using modern systems on chip (SoC), manufactured by Xilinx, is considered. Most preferably, according to the authors, is to use the SoC family Zynq-7000, combining into a single chip of programmable logic Artix / Kintex-7 and a high-performance ARM processor Cortex-A9. Using the proposed SoC allows us to solve the task of transceivers RNS “Krabik-BM” upgrade. In particular, it is expected to reduce the cost, weight and dimensions of the transceiver while increasing reliability by eliminating external interactions between the programmable logic and processor system. The article presents the block diagram of the transceiver RNS “Krabik-BM” before and after the upgrade. Another direction of the development of RNS is the development of radionavigation software of the secondary information processing in terms of opportunities and tools provided by modern operating systems and software development environment. For the design of this kind of software cross-platform integrated development environments with open source and high-level languages should be used. The most suitable one is the use of Qt Creator environment, providing the creation of applications with an extensive class library and ready development tools. The article presents the main elements of the radio navigation results measurements of the secondary processing program user interface, as well as its potential in output and processing terms. In conclusion, according to the article the use of selected directions of the RNS modernization in terms of hardware and software will enhance the competitiveness of the “Krabik-BM” and open up opportunities for further improvements due to the significant rise of hardware and computing resources of the system.
Radio navigation system, modernization, software, system-on-chip
Короткий адрес: https://sciup.org/148177451
IDR: 148177451