Stress-strain state during draft of wide bands with shear

Бесплатный доступ

Forging processes are traditional methods of metalworking, their application is very extensive and allows the manufacture of metal products for various industries in a wide temperature range. The redistribution of the main acting forces during forming is a necessary condition for the transfer of traditional forging methods to high-tech methods of metal production. The main products of press-forging production are forgings such as pallets and plates. In the present work, the effect of shear forces on the stress-strain state is studied when the friction forces are redistributed on the contact surface and/or the nature of the metal flow changes during upsetting of wide strips. The analysis of the stress state was carried out by the method of slip lines compared with the existing method of settlement without shear. The field of slip lines and the hodograph of velocities for the draft of the strip with a shift are compiled. The stresses and intensity of the shear deformation were estimated by the analytical method. It was revealed that the upsetting of the strip between plane-parallel plates is accompanied by extremely uneven deformation over the section of the workpiece. The stress state is compared with traditional deformation and with superimposed shear deformation. The use of shears made it possible to realize predominantly compressive stresses, which make it possible to eliminate internal defects of the workpiece of foundry origin. The introduction of shear deformations contributes to the intensification of the plastic deformation process over the entire cross section of the strip, the stress values during draft with additional shear increase on average 4-6 times compared to normal draft. The increase in stress occurs due to the development of the intensity of shear deformation, reaching a value of 0.4 per compression.

Еще

Deformation, stress state, slip lines, strain force, severe plastic deformation

Короткий адрес: https://sciup.org/146282663

IDR: 146282663   |   DOI: 10.15593/perm.mech/2023.2.03

Статья научная