Neural network-aided classification of hyperspectral vegetation images with a training sample generated using an adaptive vegetation index
Автор: Firsov Nikita Aleksandrovich, Podlipnov Vladimir Vladimirovich, Ivliev Nikolay Aleksandrovich, Nikolaev Petr Petrovich, Mashkov Sergey Vladimirovich, Ishkin Pavel Aleksandrovich, Skidanov Roman Vasilyevich, Nikonorov Artyom Vladimirovich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 6 т.45, 2021 года.
Бесплатный доступ
In this paper, we propose an approach to the classification of high-resolution hyperspectral images in the applied problem of identification of vegetation types. A modified spectral-spatial convolutional neural network with compensation for illumination variations is used as a classifier. For generating a training dataset, an algorithm based on an adaptive vegetation index is proposed. The effectiveness of the proposed approach is shown on the basis of survey data of agricultural lands obtained from a compact hyperspectral camera developed in-house.
Hyperspectral images, vegetation index, convolutional neural networks
Короткий адрес: https://sciup.org/140290288
IDR: 140290288 | DOI: 10.18287/2412-6179-CO-1038