On how we can non-canonically increase hereditary drought resistance in plants (by an example of cereals)

Бесплатный доступ

Improvement of hereditary drought resistance in crops is recently being among the main objectives for food security of humanity because of global warming and the growing costs for bakery and forage grain. Analysis of complex properties of drought resistance in cereals (phenotyping) shows the limitations of a canonical genocentric approach and the approaches based on molecular genetics to solve the problem of significant hereditary improvement of drought resistance. The priority epigenetic approach that we propose is based on the theory of eco-genetic organization of quantitative traits (TEGOQT). In TEGOQT seven genetic-physiological systems (GPS) involved in harvest increasing, but not particular traits of productivity, are to be operated with. These GPS are attractions; micro-distribution of attractive plastic substances between grains and chaff in ear; adaptability to drought, cold, frost, heat, salt, etc; horizontal immunity; «payment» by dry biomass for a limitative factor of soil nutrition - N, P, K, etc; tolerance to plant density in phytocenosis; hereditary variability in duration of the phases of ontogenesis). In this paper we discuss drought adaptability as a part of GPS complex. It is shown that phenotyping evaluation is necessary to analyze drought tolerance, the complex property to which no less than 22 component characters contribute. This allows to construct a set of eco-genetic portraits (EGP) of parent plants at different types of drought simulated in an artificial climate control chamber. The EGP are histograms which reflect the values of all components of drought resistance for each parent thus allowing to select pairs complementary in the elements of the EGP. Based on a predictive EGP, it is possible to define, through mathematical models that reflect the contribution of each component to the resulting drought tolerance, the optimum combination of components for ensuring maximum positive additive effect, and thus to manage selection of the parents for hybridization in view to create new drought resistant varieties.

Еще

Drought resistance, phenotyping, eco-genetic portraits, management by selection of parental pairs, сrop cereals

Короткий адрес: https://sciup.org/142214048

IDR: 142214048   |   DOI: 10.15389/agrobiology.2017.3.487rus

Статья научная