Nonlinear dynamics and stages of damage of Ti6Al4V and Ti45Nb titanium alloys in very high cycle fatigue

Бесплатный доступ

The paper presents an experimental methodology aimed at evaluating a very-high cycle resource for aviation titanium alloys Vt-6 (Ti6Al4V) and Ti45Nb for medical applications with different microstructures (large-crystal and submicrocrystalline ones). The submicrocrystalline (SMC) state was obtained by an intensive plastic deformation realized in two ways: the three-dimensional forging for Ti45Nb and radial-shear rolling for Ti6Al4V. The experimental program tests high-cycle and very-high-cycle loading (number of cycles 107-109) realized using the in situ determination method of the accumulation of the irreversible fatigue damage by analyzing nonlinear forms of feedback in a closed system ultrasonic fatigue setup. This makes it possible to establish the connection of the microscopic fatigue mechanisms with the model views and consider the stages of the damage development based on the nonlinear kinetics of the defect accumulation under cyclic loading in high- and gigacycle fatigue modes. We established various relations between changes in the amplitude of the second harmonic of vibrations of the free end of the samples with different internal structures, which are associated with the mechanisms of stress relaxation and damage accumulation. The grain size reduction in Ti45Nb alloy by the three-dimensional forging improved the fatigue properties by 1.3-1.5 times, whereas for VT-6 alloy, the radial-shear rolling method could not increase the fatigue properties in the very high cycle fatigue range, which may be caused by the presence of large residual internal stresses. Based on the scale parameters obtained earlier from the fracture surface morphology and the relations established in this work, the kinetic equations for the origin and growth of fatigue cracks in the gigacycle loading range will be constructed. This equation, based on the empirical power parameters related to the structure of the material, will allow us to determine the number of cycles for the origin of an internal crack and its growth to the surface.

Еще

Fracture, titanium alloys, gigacycle fatigue, surface morphology, nonlinear dynamics

Короткий адрес: https://sciup.org/146281988

IDR: 146281988   |   DOI: 10.15593/perm.mech/2020.2.12

Статья научная