Heterogeneous ensemble algorithm for classification of different types of data
Автор: Alsova Olga, Stubarev Igor
Журнал: Известия Самарского научного центра Российской академии наук @izvestiya-ssc
Рубрика: Информатика, вычислительная техника и управление
Статья в выпуске: 6-1 т.19, 2017 года.
Бесплатный доступ
In this article developed heterogeneous ensemble algorithm for classification of different types of data is proposed. The algorithm is based on the iterative use of single (basic) classifiers on the initial training sample and inclusion in the ensemble only those classifiers whose relative error does not exceed a predetermined threshold. With the algorithm a few ensembles were designed for data from machine learning database and for real medical data. The comparative testing shows the advantages of the proposed ensemble algorithm compared with the single classifiers (the increase of classification accuracy, the decrease of the variance of the classifier).
Bagging, bootstrap - выборка, single (basic) classification algorithm, heterogeneous ensemble algorithm, bootstrap - sample, decision tree, logistic regression, neural network
Короткий адрес: https://sciup.org/148205376
IDR: 148205376