Multiprecision arithmetic as a guarantee of the required accuracy of numerical calculation results

Бесплатный доступ

This paper is devoted to the error analysis of numerical algorithms using arbitrary precision floating point numbers. The results of this paper are estimates or errors that depend on the mantissa length. Also, there are estimates for the required mantissa length to achieve required error bounds.

Accuracy and precision, numerical algorithms, arbitrary precision arithmetic, markovlike algorithms, guaranteed precision

Короткий адрес: https://sciup.org/142185844

IDR: 142185844

Статья научная