On a lower bound of connected domination number for graphs with prescribed degree sequence
Автор: Kurnosov A.D.
Журнал: Труды Московского физико-технического института @trudy-mipt
Рубрика: Информатика и управление
Статья в выпуске: 2 (46) т.12, 2020 года.
Бесплатный доступ
We consider the lower bounds for the connected domination number yc(G) of the graph G. This can be defined as either the minimal cardinality of a dominating set of vertices inducing a connected subgraph of G, or as a minimal number of nonpendant vertices in a spanning tree of G. We obtain bounds on yc(G) for graphs with prescribed degree sequence. Our results imply, in particular, sharp bounds for regular graphs and some biregular graphs with leaves.
Graphs, degree sequence, regular graphs, biregular graphs, connected domination, realization graph, lower bound, spanning tree, maximum leaf spanning tree
Короткий адрес: https://sciup.org/142230078
IDR: 142230078