The features of the implementation of injection technologies using polymer-based compositions with adjustable parameters for underground construction. Part I

Бесплатный доступ

Introduction. A primary geotechnical challenge pertains to the stabilization of unstable soils due to their inadequate deformation, physical, mechanical, and filtration characteristics, which, in turn, can result in abnormal settlements, the destabilization of the soil mass under external loads, or even its own weight. The advent of chemical technologies on a global scale, along with their development within the Russian Federation, has precipitated the utilization of advanced equipment in conjunction with novel, innovative technologies. This confluence has given rise to novel methodologies and the fabrication of new materials, which have been instrumental in addressing a myriad of geotechnical challenges. The predominant methods of soil stabilization with mineral compounds (predominantly based on Portland cement) possess clear advantages; however, they do not always permit work to be conducted in soils with high water saturation, under conditions of high filtration, or in soils with low deformation indices. Consequently, issues pertaining to cementation stabilization periodically emerge. These issues manifest, for instance, in water-saturated rock soils under high hydrostatic pressures, in various fractured soils complicated by the presence of karst depressions, and in silty and organomineral soils with structural instability. Materials and methods. The employment of innovative polymer materials, such as polyurethane-based materials, facilitates the injection of mixtures with optimized strength gain, thereby addressing the issue of soil reinforcement within this process or enhancing the criteria for constraining the propagation of injection mixtures for subsequent cement grouting. Results and conclusion. Laboratory tests and analysis of a number of completed projects allow us to consider this technology effective and practical in complex engineering and geological conditions and beyond design-basis parameters for underground construction projects.

Еще

Soil stabilization, soil cementation, soil injection, complex engineering and geological conditions, cuff technology, polyurethane, emergency, construction

Короткий адрес: https://sciup.org/142245518

IDR: 142245518   |   DOI: 10.15828/2075-8545-2025-17-4-466-474

Статья научная