Fracture resistance parameters for the compressor disk imitation model
Автор: Yakovlev M.M., Yarullin R.R., Shlyannikov V.N.
Статья в выпуске: 3, 2020 года.
Бесплатный доступ
This paper presents a calculation and experimental technique for determining stress intensity factors in an imitation model of a titanium alloy disk. We studied a low-pressure compressor disk of a gas turbine engine (GTE) D-36. During operations, there occur fatigue cracks initiated and developed in the slot fillet under the blade at the place of transition of the bottom to the lateral surface of the inter-groove projection, which lead to a separation of the disk's part within its rim. The mixed-mode crack growth occured in the compressor disks. Based on the principles of imitation modeling, the geometry and loading condition of the imitation model of the compressor disk was developed. The fatigue test of the imitation model was carried out with a frequency of 5 Hz, at room temperature and with stress ratio Rc = 0.1, by means of a biaxial testing machine. The crack growth was monitored using an optical microscope. The criterion for failure was the condition for reaching a growing crack of the compensation hole. During the test, the positions and sizes of the crack fronts were fixed, which are the basis for the numerical calculation of the fracture resistance parameters. In the order of the numerical studies, six three-dimensional finite element models with different positions and sizes of the crack fronts are considered. The results of the numerical calculations based on the finite element method were used to determine the distributions of elastic and plastic stress intensity factors along each crack front. We demonstrated the advantages of the calculation and experimental methods for solving the problems of interpretation and prediction of the crack growth in the rotating disks of turbomachines using the methods of fracture mechanics.
Imitation model, gas turbine engine compressor disk, crack, biaxial loading, plastic stress intensity factor
Короткий адрес: https://sciup.org/146282060
IDR: 146282060 | DOI: 10.15593/perm.mech/2020.3.10