Magnetization [reversal] of layered nanocomposite FM/NM/FM/AFM with uniaxial anisotropy
Автор: Zakharov Yu. V., Vlasov A. Yu., Avakumov R.V.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Технологические процессы и материалы
Статья в выпуске: 4 т.16, 2015 года.
Бесплатный доступ
In present paper we consider magnetization reversal of layered nanocomposite magnetic film FM/NM/FM/AFM. Magnetic film consists of magnetic sandwich structure FM/NM/FM applied to antiferromagnetic substrate (AFM). Nonmagnetic spacer (NM) divides magnetic sandwich involving two ferromagnetic layers (FM). Differential equations describe magnetization distributions in each magnetic layer of magnetic sandwich. We use the following boundary conditions in pointed task. Fixed boundary condition specifies the boundary between ferromagnetic layer and antiferromagnetic substrate and free end boundary condition specifies the boundary between ferromagnetic layer and vacuum. In addition to that two boundary conditions simulate nonmagnetic layer. One of them is nonlinear. Landau-Lifshitz differential equation describes magnetization process. We wrote this equation in coordinate system bounded with magnetization rotation angle and distance from ferromagnetic-antiferromagnetic boundary to simplify calculations. Carrying out our investigation we obtain algebraic equation defining magnetization threshold fields, construct applied field projection of magnetization graph. Magnetization curve shows hysteresis caused by uniaxial anisotropy. We obtain a graph showing a hysteresis loop thickness depends on nonmagnetic spacer physical characteristics to demonstrate how nonmagnetic spacer has effect on magnetic hysteresis properties of multilayer magnetic film. Investigation results could be used for prediction of some physical characteristics of magnetic FM/NM/FM/AFM films.
Magnetic sandwich, magnetic film, nonmagnetic spacer
Короткий адрес: https://sciup.org/148177514
IDR: 148177514