Increasing software reliability of a distributed control systems
Автор: Strelavina O.D., Efimov S.N., Terskov V.A., Likharev M.A.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Информатика, вычислительная техника и управление
Статья в выпуске: 3 т.22, 2021 года.
Бесплатный доступ
The article considers a method of assessing and improving main parameters of the computer network efficiency. Reliability is the main criteria for ensuring the required performance of distributed control systems. To improve reliability of the computer network hardware and software redundancy are being used. Software redundancy requires new versions to be developed for software modules in which failures are likely to occur. The article considers the N-version programming and recovery block as methods of introducing software redundancy and, taking the need to develop multiple versions of the same software module into account, estimates the costs of network software development. To implement the proposed approach article presents mathematical reliability model that takes into consideration the architecture of a computer network software and the labor costs that its development is going to require. This model becomes a basis for a software created to research computer network software reliability, which allows to find the dependance of network software reliability on the number of one of its software module versions. Comparison of the changes dynamics of reliability indicators and labor intensity of software development indicated a sufficient amount of software module versions that need to be developed. The article concludes by pointing out the importance of determining the labor intensity of network software development and of its usage in the design of a computer networks in which reliability is being increased through software redundancy.
Computer network reliability, software reliability, software redundancy, reliability model, labor intensity
Короткий адрес: https://sciup.org/148323912
IDR: 148323912 | DOI: 10.31772/2712-8970-2021-22-3-459-467