Limit states and safety factors under repeated loading

Бесплатный доступ

Verification of the structures operating possibility using numerical modeling beyond the elastic limit requires standardization of safety factors and calculation methods used to get them. In the framework of the discussion on the improvement of the strength standards of the aviation and nuclear industries for structures operating under low-cycle mechanical and reversible dilatation (temperature, hydrogen) external influences, the article discusses the limiting states; the deformation properties of materials necessary for their calculation; safety factors for loads and durability; calculation methods. The article divides limit states of structures under low-cycle actions into two groups: typical, corresponding to a qualitative change in the deformation type, and individual, determined by allowable displacements and cracks for a particular structure. The following types of deformation are considered: inelastic deformation only at the running-in stage (that changes to elastic after the auspicious residual stresses develop and cyclic hardening of the material); alternating flow (that continues with the number of cycles); progressive accumulation of strains and displacements; combined deformation (when both strain span and strain increment are non-zero in a stable cycle). The types of deformation differ in possible consequences for the structure and the initial data for the calculation: mechanical properties of the material required for modeling different types of deformation should be determined by fundamentally different tests. An analysis of individual limit states without taking into account differences in the types of deformation - and thus typical limit states - may be incorrect. The main focus of the article is on typical limit states. The limit states vary depending on the stage of operation at which inelastic cyclic deformation is allowed. Inelastic deformation expands allowable load range, the expansion due to the inelastic deformation at the running-in stage only is usually more significant than additional expansion due to the continuous inelastic deformation; besides, the inelastic deformation only at the running-in stage does not demand analysis of low-cycle fatigue and accumulated strains. Further expansion of the permissible load range, as well as solution of safety problems based on risk assessments, requires a more complete study of the deformation properties of materials at the pre-fracture stage, where cyclic softening predominates.

Еще

Strength, durability, safety factor, alternating flow, progressive accumulation of strains, combined deformation

Короткий адрес: https://sciup.org/146281999

IDR: 146281999   |   DOI: 10.15593/perm.mech/2020.3.12

Статья научная