Deep learning application for box-office evaluation of images
Автор: Efremtsev Vadim Grigorievich, Ejtemtsev Nikolay Grigorievich, Teterin Evgeniy Petrovich, Teterin Petr Evgenyevich, Gantsovsky Vladislav Viktorovich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 1 т.44, 2020 года.
Бесплатный доступ
The possibility of application a convolutional neural network to assess the box-office effect of digital images is reviewed. We studied various conditions for sample preparation, optimizer algorithms, the number of pixels in the samples, the size of the training sample, color schemes, compression quality, and other photometric parameters in view of effect on training the neural network. Due to the proposed preliminary data preparation, the optimum of the architecture and hyperparameters of the neural network we achieved a classification accuracy of at least 98%.
Deep learning, neural networks, image analysis
Короткий адрес: https://sciup.org/140247067
IDR: 140247067 | DOI: 10.18287/2412-6179-CO-515