Abnormal behavior detection based on dense trajectories
Автор: Shatalin Roman Andreevich, Fidelman Vladimir Romanovich, Ovchinnikov Pavel Evgenyevich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 3 т.42, 2018 года.
Бесплатный доступ
In this paper, we propose abnormal behavior detection algorithms based on dense trajectories and principal components for video surveillance applications. The result shows that the proposed algorithms are faster than an algorithm based on lengths of displacement vectors but the accuracy is only retained if the bag-of-features model is trained on a balanced sample of behavior features.
Video surveillance, abnormal behaviour detection, principal component analysis, dense trajectories
Короткий адрес: https://sciup.org/140228751
IDR: 140228751 | DOI: 10.18287/2412-6179-2018-42-3-476-482