Primal-dual interior point methods in linear, quadratic and semidefinite programming problems

Бесплатный доступ

In this paper we consider three classes of convex optimization problems - linear, quadratic and semidefinite programming problems, then we derive and analyze a «predictor-corrector» interior point algorithm for each class of problems. Finally, we conduct numerical experiments to verify theoretical results.

Primal-dual interior point methods, ipm, numerical optimization, convex optimization, dual problem, newton's method, karush-kuhn-tucker conditions

Короткий адрес: https://sciup.org/14129821

IDR: 14129821

Статья научная