Свойства локально-циклических групп

Бесплатный доступ

Локально-циклическая группа - это группа, всякое конечное множество элементов которой порождает циклическую подгруппу. Приводятся примеры периодических локально-циклических групп и локально- циклических групп без кручения. Изучаются свойства локально-циклических групп. Локально-циклическая группа не может быть смешанной, т. е. она не может содержать одновременно элементы конечного и бесконечного порядка. Локальная-циклическая группа является абелевой. По своим свойствам различаются периодические локально-циклические группы и локально-циклические группы без кручения. Силовские подгруппы периодической локально-циклической группы являются циклическими или квазициклическими. Периодическая локально-циклическая группа разлагается в прямое произведение силовских подгрупп. Н. Ф. Сесекиным и А. И. Старостиным доказана теорема: локально-конечная группа, все силовские p-подгруппы которой квази- цикличны, является полной периодической локально-циклической группой. Здесь в дополнение к этой теореме мы рассмотрим структуру полной периодической локально-циклической группы. Полная периодическая локально- циклическая группа разлагается в прямое произведение квазициклических р-подгрупп по различным простым числам р. Полная периодическая локально-циклическая группа единственным образом восстанавливается по своему нижнему слою. Приводится пример того, что произвольная периодическая локально-циклическая группа не единственным образом восстанавливается по своему нижнему слою. Локальная циклическая группа без кручения изоморфна некоторой подгруппе аддитивной группы рациональных чисел. Периодическая локально- циклическая группа слойно конечна, т. е. в ней конечно число элементов каждого порядка. Локально- циклическая группа может быть либо слойно конечной, либо подгруппой аддитивной группы рациональных чисел. Результаты могут найти применение при кодировании информации, иcпользующейся в сеансах космической связи.

Еще

Периодическая группа, локально-циклическая группа, квазициклическая группа, полная группа, слойная конечность

Короткий адрес: https://sciup.org/148177699

IDR: 148177699

Статья научная