Test-object recognition in thermal images

Автор: Mingalev Aleksandr Vladimirovich, Belov Andrey Vyacheslavovich, Gabdullin Ildar Maskhutovich, Agafonova Regina Renatovna, Shusharin Sergey Nikolaevich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений, распознавание образов

Статья в выпуске: 3 т.43, 2019 года.

Бесплатный доступ

The paper presents a comparative analysis of several methods for recognition of test-object position in a thermal image when setting and testing characteristics of thermal image channels in an automated mode. We consider methods of image recognition based on the correlation image comparison, Viola-Jones method, LeNet classificatory convolutional neural network, GoogleNet (Inception v.1) classificatory convolutional neural network, and a deep-learning-based convolutional neural network of Single-Shot Multibox Detector (SSD) VGG16 type. The best performance is reached via using the deep-learning-based convolutional neural network of the VGG16-type. The main advantages of this method include robustness to variations in the test object size; high values of accuracy and recall parameters; and doing without additional methods for RoI (region of interest) localization.

Еще

Image classification, object detection in images, image recognition, deep-learning-based convolutional neural network, thermal image, thermal imaging device

Короткий адрес: https://sciup.org/140246468

IDR: 140246468   |   DOI: 10.18287/2412-6179-2019-43-3-402-411

Статья научная