Test-object recognition in thermal images
Автор: Mingalev Aleksandr Vladimirovich, Belov Andrey Vyacheslavovich, Gabdullin Ildar Maskhutovich, Agafonova Regina Renatovna, Shusharin Sergey Nikolaevich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 3 т.43, 2019 года.
Бесплатный доступ
The paper presents a comparative analysis of several methods for recognition of test-object position in a thermal image when setting and testing characteristics of thermal image channels in an automated mode. We consider methods of image recognition based on the correlation image comparison, Viola-Jones method, LeNet classificatory convolutional neural network, GoogleNet (Inception v.1) classificatory convolutional neural network, and a deep-learning-based convolutional neural network of Single-Shot Multibox Detector (SSD) VGG16 type. The best performance is reached via using the deep-learning-based convolutional neural network of the VGG16-type. The main advantages of this method include robustness to variations in the test object size; high values of accuracy and recall parameters; and doing without additional methods for RoI (region of interest) localization.
Image classification, object detection in images, image recognition, deep-learning-based convolutional neural network, thermal image, thermal imaging device
Короткий адрес: https://sciup.org/140246468
IDR: 140246468 | DOI: 10.18287/2412-6179-2019-43-3-402-411