Development of countries’ creditworthiness rating assessment system

Автор: Babanskaya Viktoriya, Rusanov Aleksey, Gorivenko Vladimir, Sobchenko Konstantin, Sokolovskiy Ivan, Dolzhkova Ekaterina

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 8 (9), 2016 года.

Бесплатный доступ

The paper presents a countries’ creditworthiness assessment system involving the advanced mathematical models, such as discriminant analysis, cluster analysis, multiple regression, non-linear models and neural network model. On the system development process the following economic figures were used: GDP per capita, GDP value, annual growth rate of GDP, FDI - foreign investment, rate of unemployment, consumer price inflation index, the size of government debt in percentage of GDP. Obtained models and results were united and programmed. As a result we developed the new Russian system of countries’ creditworthiness assessment “Country2016”.

Еще

Discriminant analysis, neural network, credit rating, multiple regression, cluster analysis, nonlinear model

Короткий адрес: https://sciup.org/14111161

IDR: 14111161   |   DOI: 10.5281/zenodo.60246

Статья научная